14

EVAPORATIVE COOQOLING OF GASES

G. A. Mikhailovskii

INZHENERNO-FIZICHESKII ZHURNAL

Inzhenerno-Fizicheskii Zhurnal, Vol. 11, No. 1, pp. 22-29, 1966

UDC 533.6

Expressions are given for the adiabatic exponent in equations with
various independent parameters relating to processes involving evap-
orative cooling of gases. Some peculiarities of such processes and
unusual effects associated with them are discussed.

In evaporative cooling of a gas in a high-velocity
stream, or in the compression process in a compres-
sor stage, or, finally, simply in a pipeline through
which a gas is transferred from one part of a plant
to another, it is necessary to take into account the
peculiarities of the process, and, in particular, the
thermodynamic cooling effect. This last phenomenon
is sometimes the main objective of water injection,
an example being the aerothermopressor.

The thermogasdynamic cooling effect has not been
studied very closely. An investigation of adiabatic
processes with phase transitions sheds some light on
its complex laws and is the first stage in an analyti-
cal treatment,

The processes in evaporative cooling of gases are
adiabatic, Because of the absorption of the greater
part of the heat by the evaporating liquid, the caloric
properties of the mixture of gas and vapor vary over
a wide range.

These peculiarities of the mixture are described
by the value of the adiabatic exponent. The latter, as
is shown by investigation, may take values of both 0
and =, and all positive and all negative values, de~
pending on the intensity of evaporation. Certain finite
positive values of the adiabatic exponent are attained
when the intensity of evaporation with respect to tem-
perature (E)de/BT)dq._.o — +w_ In equations of the adia-
batic curve with various independent parameters, the
adiabatic exponent assumes various values.

For a mixture containing 1 kg of dry gas, we will
write the following equations:

dQ = C,dT + pdV - 0, kJ /kg of dry gas, (1)
dQ — C,dT —Vdp — 0, kJ /kg of dry gas, (2)
= RT, (3)
C,—C,=R--put. kI/kg of dry gas - degree (4)*

where
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dyg—=0

*See [1) with regard to (4)—(8).

R = Rg + deRe is the gas constant, depending in a
given case on the vapor content, kJ/kg of dry gas.
From (3) we obtain

dT == (pdV -+ Vdp — TdR)/R. (7}

With the aid of (1)~(7) we find the equations of an
adiabatic process with evaporative cooling, and ex-
pressions for the adiabatic exponent. We accomplish
the derivations by three methods having different orig-
inal equations. In each of the three cases we find three
equations of the process, corresponding to three pos-
sible combinations of the variable parameters.

1) The original eguation is (1). Substituting the
value of dT from (7), we find

dr
R)— +C, L w—— = 0.
(€, + ) v + P ;
Using (4), we abtain
dv dp dR
kLo 4 CE L ES g, a
Y + p R (a)
where
ky = (C; — pev £)/C, (8)

is the local adiabatic exponent, It is convenient to
designate it by the subscript 2. (Other expressions
will be obtained later, which we shall designate k,

If the quantity k; may be assumed constant during
the process or in a certain part of it, then from (a),
after integration, we obtain the adiabatic curve equa-
tion with independent parameters p and V:

pV*/R = const.

From this expression, with the aid of (3), we may
obtain equations with variables T, V and T, p:

TV = const,
T (Rip)'~""* = const. 9)

The adiabatic exponent k, in these equations must
be calculated from (8). We note that of the three equa-
tions obtained for the process, only one, with inde-
pendent variables T and V, has the usual form. The
other two equations are complicated by the fact that
they contain a third variable quantity R.

2) The original equation is (2), Substituting the
temperature differential from (7), we obtain
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Table 1

Adiabatic Exponents

For special adiabatic processes

g 3 :
% ‘E General expression 3 z
b S = s o z G const
o5 P SISl A ’"w'
Elld = i i .
o = =
. kg (l-iu)— == (1 )
Ci [
.V byt o 0 ‘e FL e
Cu g a1 a—b
Ci—peves Pelet 1 Cpo /(/(l 5 a-——(l h)
T,V by —— © - s
Cu C“ i
G c; Cp by (V-a)— (11 h)
T 2y — — 0 S o ie
> P Cutpevet Pelet i € = b
e

Remark: @ = pv_/ug; b = pdg(dv,/0T)¢ /Cy. The exponents kpp and kgy take
negative values, A process with ¢ = const is possible at temperatures not in excess

of the critical temperature for the vapor.

and, expressing the difference term in brackets in
terms of (4), we find

dv d d
/33(—"‘“—R>+—pzor (b)
1% R p
where
fey == CAC, + pr 9 (10)
is also the local adiabatic exponent,
If k3 may be assumed to be constant, then, inte-

grating (8), we obtain an equation with variables p
and V i

== const.

p (V/R)"

Similarly, we also find the following two equations:

(ka~1), ks
T/p = const,

T(V/R)"* " = const, (11)
where the value of the adiabatic exponent k3 must be

determined from (10).
In this case, of the three equations obtained, that

with independent variables T and p has the usual form.

However, the adiabatic exponent is now expressed by
another relation and therefore differs numerically
from kZ-

3) The original equations are those of an adiabatic
curve of the usual type, (9) and (11), with variables

T, Vand T, p. These equations may be written in
the following form:

TYRCu - const; Tp_R"Ci == const.

If the first one is divided by the second and then a root
of degree R/Cj is extracted from both sides of the
equality obtained, we obtain

pV** = const, (12)

where

ky = C,C,. (13)

Making a substitution in (12), in one case of the vol-
ume and in the other of the pressure from (3), we ob-
tain equations with variables T, V and T, p in the
following form:

RTVH™ — const,
RT pt*=1 kv conxt,

Consequently, in this case also we obtain only one
equation of the usual type for the adiabatic curve—the
equation with variables p and V (12). We again obtain
a new expression for the adiabatic exponent,

Thus, it follows from all that has been said, that
if we take the ordinary form of the equation with vari-
ables T, V; T, p; and p, V, the adiabatic exponent in
these three cases will be different. The corresponding
expressions are shown in Table 1.

Table 2

Coordinates of Center of Hyperbola

Coordinates
of center

For
1y (8)

|
T
o
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Values of local adiabatic exponents for processes with evaporation
of injected water (1, 2, 3, 4—asymptotes respectively for k;, for ky
and k;, for k; and k,, and for kj).
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Table 3

Limits of Adiabatic Exponent Values in Processes with Evaporation

Process
group E ky ke By
c ,
i —o 2B ~& o 1—fgp 1-0
le Ue
[ C
It -2__ 0~—w kg —— 00 0~ hiyy
le Ua
Cy
811 —_ _0 4 —ky + oo —ky k3V"kzl
Ue ,
v 0—+ kg—— ky—1 ka—1

Remark: kq, kzp and kgy are from Table 1,

Table 1 also gives the relations for the adiabatic
exponent in particular cases of an adiabatic process.
These relations are easily obtained from the general
expressions, bearing in mind {1] that in an adiabatic-
isochoric process Cy = 0, in an adiabatic-isobaric
process Ci = 0, in an adiabatic-isothermal process
¢ ==, and in an adiabatic process at constant vapor
content £ = 0. Somewhat more complex relations are
obtained for the adiabatic exponent kg in a process at
constant relative humidity ¢. We will not give the
method of obtaining these here, however.

When there is variation in the intensity of phase
transition £, the temperature coefficients Cy and Cy
vary considerably. This has an effect on the adiabatic
exponent, as follows from the general expressions for
ky, kg, and k3. This dependence is shown graphically
in the figure.

A calculation was made for air under the following
conditions: p = 2.25-10° N/m? t = 500° C, de = 0.02
kg/kg of dry air, and for various values of the inten-
sity of evaporation £ = (—1—+0.6) - 1073 kg/kg of dry
air per degree.

The relation k = f(£) in all three cases is expressed
in terms of linear-fractional functions, graphs of
which are equilateral hyperbolas with asymptotes par-
allel to the coordinate axes. To find the asymptotes
of these hyperbolas, it is sufficient to find the coordi-
nates of their centers in each of the three cases. Since
we know the equations of the hyperbolas (Egs. (8), (10),
and (13)), this is easily accomplished by ordinary
mathematical methods. The center coordinates found
for each hyperbola are shown in Table 2.

From Table 2 and the figure it may be seen that
the abscissa of the center of the two hyperbolas re-
lating to k; and ky is £ = —=Cy/Ug. But from [1] it is
known that for such a phase transition rate, an adia-
batic-isochoric process occurs. Therefore k; and k;
pass through += in an adiabatic-isochoric process.
The point A on the abscissa axis corresponds fo this
process.

It is known that the region of the graph between the
asymptote passing through the point A and the coordi-
nate axis (with £ = —Cy/ug—0) is associated with ex-
pansion processes. Therefore the sections of the curves
lying in this region determine the value of the adia-

batic exponent in expansion processes, and those to
the right and left of this region—in compression pro-
cesses.

The curves in the figure intersect the abscissa axis
to the left of point A, and therefore, in processes with
evaporation of an injected liquid, the adiabatic expo-
nents ky, ks, and ky may take zero values only in com-
pression processes (at reduced temperature, as will
be shown below).

The exponents ky and k, vanish at a single value of
£, and in this case the corresponding curves intersect
(point B in the figure). To find the value of ¢ corre-
sponding to this point, we equate to zero the expres-
sions for k; or k3 from (10) or (13). We find as a re-
sult that C; = 0, and expressing C; according to (6),
we obtain

g=—C,lic.

The values obtained for C; and £ define an adiabatic-
isobaric process [1], to which the point B on the ab-
scissa axis corresponds.

The adiabatic exponent k, takes a zero value, as
follows from (8) and (68), when

Ci—prel=C, ru =0

or for an evaporation rate of

g —Cug.

All three curves intersect on the ordinate axis. Since
then £ =0, k= Cp/CV, i. e., it takes on the usual ex-
pression for the adiabatic exponent in a process with-
out phase transition.

A graphical relation is shown in the figure for a
gas temperature (500° C) above the critical tempera-
ture of water vapor (374° C), and therefore there is
no physical state characterized by the relative humid-
ity. In this case adiabatic processes with evaporative
cooling must be divided into four groups. The ranges
of adiabatic exponent values for each of the four groups
are given in Table 3.

Only group III contains expansion processes. Com-
pression processes of the first two groups differ from
the compression processes of group IV as regards the
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sign of the temperature increment. Processes of groups
1 and II take place with dT < 0, due to the considerable
cooling. A convenient cooling rate criterion is the vol-
ume phase transition rate

(Gd ) ]
v dg=0

Processes of the first two groups occur at a cooling
rate

jw| > plue.

In the processes of group IV, dT > 0, since the
cooling rate is relatively low:

]u)[ < plig.

The boundary between processes of groups I and
1V (beyond the limits of the graph) is an isothermal
process in which the left and right sides of the given
inequalities are equal. This is obtained with £ = %o,

With these parameters of state, for which the curves
in the figure were constructed, the numerical values
of the quantities of Table 3 are as follows: 5 =—-C /
/ig = =0.31-107 kg/kg of dry air- degree = —0 31 g/kg
of dry air-degree; £y = —Cy/ue = —0.25-107° kg/kg
of dry air-degree = —0.25 g/kg of dry air- degree;
kyT = ig/ug = 1.116; kep = —0.602; kg = 1.38; kgy =
= —2.29; the volume phase transition rate w = -0.722
kg/m?,

Table 3 makes a special distinction for processes
of group II for which all three adiabatic exponents
take negative values. The quantities ky in group I and
ks in group III take negative values in part.

Thus, we come to the following conclusions:

1) The local adiabatic exponent takes values from
—» to +o  depending on the evaporation rate.

2) In the adiabatic curve equations with different
independent variables (p, V; T, V; p, T), the adia-
batic exponent takes different numerical values.
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3) In group II processes, i.e., with an evaporation
rate

c, ade) Cy
— e | = <=,
i (GT dg= U ’

e €

all three adiabatic exponents take negative values.

4) These unusual properties associated with pro-
cesses with evaporative cooling lead to unexpected
flow effects. Thus, for example, the pressure may
drop during compression, and the reduction in pres-
sure may be accompanied, not by an increase, as is
usual, but by a decrease in stream velocity, and so
forth.

NOTATION

Cy and C; are, respectively, temperature co-
efficients of internal energy and enthalpy, kJ/kg of
dry gas - degree; Cy and Cp are the isochoric and iso-
baric heat capacities, relative to 1 kg of dry gas, in
phase transition processes, kJ/kg of dry gas - degree;
£ = (8de/0T)dq=0 is the phase transition rate; de is
the vapor content in kg/kg of dry gas; pe and v, are
the partial pressure, N/m?, and specific volume,

3/kg in mixture condltlons ue and ig are the inter-
nal energy and enthalpy of vapor, kd/kg; ¢ is the rela~
tive humidity of gas.
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